
B
Reinforcement Leaning Agent

Reinforcement Learning (RL) focuses on agent-based decision-making to maximize cumulative

rewards within a given environment. Unlike supervised learning methods where models are trained

on labeled datasets, RL agents must learn through interaction, guided only by sparse reward signals

[53]. As noted by A.G. Barto, RL relies on two foundational components: search and memory [54].

Search involves trial and error to explore possible actions, while memory allows the system to

retain and reuse information about what has worked well in past situations. Given a well-defined

environment and reward function, RL can be a powerful framework for developing agents capable

of aligning with intended goals—even learning subtle behaviors that may not have been explicitly

designed.

However, RL also presents several challenges. Compared to supervised learning, it typically

demands significantly more computational resources. Additionally, once an agent is trained in

a specific environment, its learned policy often struggles to generalize to new or slightly altered

environments.

To train RL agent on Level 1, the level was converted into a Gymnasium environment.

Gymnasium is the actively maintained fork of OpenAI’s Gym— a Python library for developing

and testing RL algorithms [55], [56]. To create a custom Gym environment, the designer must

configure the observation and action spaces, which define the possible inputs (actions taken by

the agent) and outputs (observations returned by the environment) [56]. These spaces can be either

discrete or continuous, depending on the task. In addition to these definitions, two core functions

are required: the reset function, which initializes a new episode, and the step function, which



98 APPENDIX B. REINFORCEMENT LEANING AGENT

updates the environment state based on the agent’s action. The step function must compute the

next observation, the reward signal, and whether the episode has ended. With these components

in place, the Level 1 environment was implemented as a custom class, GridWorldEnv, as described

in Pseudocode 3.

Algorithm 3 GridWorldEnv Core Mechanisms
1: function init
2: Define action space as 4 discrete actions (up, down, left, right)
3: Define observation space as flattened grid of tile values
4: end function
5: function reset
6: Reset to initial grid configuration
7: Reset step counter and collected chip set
8: return initial observation
9: end function
10: function step(action)
11: Move RL agent and evaluate resulting tile:

• Hazard ⇤ end episode with penalty

• Chip ⇤ collect and reward

• Socket ⇤ unlock if all chips collected and reward

• Exit ⇤ end episode with the biggest reward

12: Apply small step penalty
13: Move the other agent with sampled action
14: return observation, reward, termination flags
15: end function
16: function _move(position, action)
17: Compute new coordinates from direction
18: if within bounds and not wall then
19: return new position
20: else
21: return original position
22: end if
23: end function
24: function _get_obs
25: Overlay agent positions on grid
26: return flattened grid as observation
27: end function

After setting up the Gymnasium environment, the agent was trained using the Stable Baselines3

(SB3) library, which offers a collection of widely used reinforcement learning algorithms—including

PPO, DQN, A2C, SAC, and TD3—implemented in PyTorch [57]. For this experiment, the agent

was trained using the Proximal Policy Optimization (PPO) algorithm due to its performance across

a wide range of RL tasks. Detailed parameter configuration is shown in the table B.1.

The experiment began by training an agent for 2 million timesteps, which served as a baseline

model for subsequent reward function tuning. Building upon this base agent, additional training



99

Table B.1: PPO Training Hyperparameters

Parameter Value
Policy MlpPolicy
Learning Rate 3/ 1024

Discount Factor (�) 0.99
GAE Lambda (.) 0.95
Steps per Update (n_steps) 2048
Batch Size 64
Epochs per Update 10
Clipping Range 0.2
Random Seed Fixed (None)

sessions were conducted for 1 million timesteps each, specifically targeting performance on Level

1. Despite a total of 3 million timesteps of training, the agent ultimately failed to learn how to

complete the level. Figure B.1 illustrates the training trends for both the base agent and the

subsequent runs.

As shown in the figure, the agent’s mean reward consistently remained on the negative side, in-

dicating unsuccessful training. Notably, a significant behavioral difference can be observed between

the runs shown in Figure B.1b and Figure B.1c. In Figure B.1b, the agent exhibits a higher mean

reward and longer episode length, suggesting that it learned to navigate around hazardous tiles,

though without completing the level. In contrast, Figure B.1c shows both lower mean reward and

shorter episode lengths. This decline resulted from modifying the reward function to assign a larger

negative penalty per step, aimed at discouraging inefficient behaviors such as aimless wandering

or repeatedly visiting the same locations. However, this adjustment backfired—the agent began

stepping into hazardous tiles more frequently in an apparent attempt to avoid the accumulating

negative reward.

Finally, Figure B.1d depicts run 6(green) where the maximum number of steps per episode

was increased from 100 to 200. This change was intended to give the agent more time to learn

the sequential logic of the level—collecting all chips and then reaching the exit. However, the

results were nearly identical to those in Figure B.1c, run 5(magenta), indicating that extending

the episode length alone was insufficient for improving learning outcomes.

Figure B.2 shows the resulting agent’s trajectories in visual way. We can observe for run 3 and

run 5, agent’s last position is right to the pink hazardous tile, indicating the backfire triggered in

the training session.



100 APPENDIX B. REINFORCEMENT LEANING AGENT

(a) Run 1 base agent

(b) Runs 2 and 4 with initial negative reward every step

(c) Runs 3 and 5 with increased negative reward every step

(d) Run 6 with increase maximum steps per episode

Figure B.1: Training progress across different experimental conditions.



101

(a) Run 1 base agent trajectory (b) Run 2 agent trajectory

(c) Run 3 agent trajectory (d) Run 4 agent trajectory

(e) Run 5 agent trajectory (f) Run 6 agent trajectory

Figure B.2: Evaluation trajectories of trained agents across six different runs


